Projected global tropospheric ozone impacts on vegetation under different emission and climate scenarios

Sicard Pierre¹, Anav Alessandro², De Marco Alessandra³, Paoletti Elena²

¹ ACRI-HE, Sophia Antipolis, France
² Institute of Sustainable Plant Protection, National Research Council, Sesto Fiorentino, Italy
³ Italian National Agency for New Technologies, Energy and the Environment, C.R. Casaccia, Italy

Abstract

The impact of ground-level ozone (O₃) on vegetation is largely under-investigated at global scale despite worldwide large areas are exposed to high surface O₃ levels and concentrations are expected to increase in the next future. To explore future potential impacts of O₃ on vegetation, we compared historical and projected O₃ concentrations simulated by six global atmospheric chemistry transport models on the basis of three representative concentration pathways emission scenarios (i.e. RCP 2.6, 4.5, 8.5). To assess changes in the potential O₃ threat to vegetation, we used the AOT40 metric. Results point out a significant overrun of AOT40 in comparison with the recommendations of UNECE for the protection of vegetation. In fact, many areas of the northern hemisphere show that AOT40-based critical levels will be exceeded by a factor of at least 10 under RCP8.5. Changes in surface O₃ by 2100 range from about +4-5 ppb worldwide in RCP8.5 scenario to reductions of about 2-10 ppb in the RCP2.6 scenario. The risk of O₃ injury for vegetation decreased by 61% and 47% under RCP2.6 and RCP4.5, respectively and increased by 70% under RCP8.5. Key biodiversity areas in South and North Asia, central Africa and Northern America were identified as being at risk from high O₃ concentrations. To better evaluate the regional exposure of ecosystems to O₃ pollution, we recommend the use of improved chemistry-climate modelling system, fully coupled with dynamic vegetation models.

* Corresponding author: pierre.sicard@acri-he.fr

Keywords: AOT40, Ozone, Representative Concentration Pathways, O₃ injury on vegetation
Introduction

Tropospheric ozone (O$_3$) is a secondary air pollutant, i.e. it is not emitted as such in the air but it is formed by reactions among precursors (e.g. CH$_4$, VOCs, NOx). Ozone is an important greenhouse gas resulting in a direct radiative forcing of 0.35-0.37 W m$^{-2}$ on climate (Shindell et al., 2009; Ainsworth et al., 2012). Despite significant control efforts and legislation to reduce O$_3$ precursor emissions, tropospheric O$_3$ pollution is still a major air quality issue over large regions of the Globe (Lefohn et al., 2010; Langner et al., 2012; Young et al., 2013; Cooper et al., 2014; EEA, 2015; Sicard et al., 2016a,b). Long-range transport of O$_3$ and its precursors can elevate the local and regional O$_3$ background concentrations (Ellingsen et al., 2008; Wilson et al., 2012; Paoletti et al., 2014; Derwent et al., 2015; Xing et al., 2015; Sicard et al., 2016a). Therefore, remote areas such as the Arctic region, can be affected (Langner et al., 2012). The current tropospheric O$_3$ levels (35-50 ppb in the northern hemisphere, NH) are high enough to damage both forests and crops by reducing growth rates and productivity (Paoletti et al, 2009; Wittig et al., 2009; Anav et al., 2011; Mills et al., 2011; Ashworth et al., 2013; Proietti et al., 2016).

Increasing atmospheric CO$_2$, nitrogen deposition and temperatures enhance plant growth, and increase primary production and greening of plants (Nemani et al., 2003; Zhu et al., 2016). At the global scale, a widespread increase of greening and net primary production (NPP) is observed over 25-50% of the vegetated area, while a decrease is observed over only 7% of the Globe (Nemani et al., 2003; Zhu et al., 2016). In contrast, a previous modeling study over Europe shows how O$_3$ reduces the mean annual gross primary production (GPP) by about 22% and the leaf area index by 15-20% (Anav et al., 2011). Similarly, Proietti et al (2016), using different in-situ measurements collected over 37 European forest sites, found a GPP decrease of 30% caused by O$_3$. At global scale, over the time period 1901-2100, GPP is projected to decrease by 14-23% (Sitch et al., 2007). As a consequence of reduced photosynthetic assimilation, the total biomass of trees is estimated to be decreased by 7% under the current O$_3$ mean concentrations (40 ppb) and by 17% under the O$_3$ mean concentrations expected in 2100 (97 ppb) compared to preindustrial O$_3$ levels (about 10 ppb, Wittig et al., 2009). Wittig et al. (2009) also reported that the total tree biomass of angiosperms was reduced by 23% at O$_3$ mean concentrations of 74 ppb, and by 7% at 92 ppb for gymnosperms. High surface O$_3$ levels, exceeding 40 ppb, do occur in many regions of the Globe with associated economic costs of several billion dollars per year (Wang and Mauzerall, 2004; Ashmore, 2005). Ashworth et al. (2013) reported an annual loss of 3.5% for...
wheat (very O$_3$-sensitive) and 1% for maize (more O$_3$-tolerant) for Europe in 2010 relative to 2000, while Holland et al. (2006) estimated a €4.5 billion loss in the production of 23 common crop species, due to surface O$_3$ exposure by 2020 relative to 2000.

The international Tropospheric Ozone Assessment Report (TOAR) establishes a state-of-the-art and an up-to-date scientific assessment of global O$_3$ metrics for climate change, human health and crop/ecosystem research (Lefohn et al. 2017). To assess the potential O$_3$ risk and protect vegetation from O$_3$, different metrics are used: the European and US standard (AOT40 and W126, respectively) are based on exposure-based metrics, while flux-based metrics have been introduced only recently (UNECE, 2010; Klingberg et al., 2014; EEA, 2015). Unlike the exposure-based metrics, which only rely on the surface O$_3$ concentration, the flux-based metrics were developed to quantify the accumulation of damaging O$_3$ taken up by vegetation through the stomata over a species-specific phenological time-window. These metrics also provide an information-rich tool in assessing the relative effectiveness of air pollution control strategies in lowering surface O$_3$ levels worldwide (Monks et al., 2015). By reducing plant photosynthesis and growth, high tropospheric O$_3$ levels will result in reduction in carbon storage by vegetation and, in fine, an indirect radiative forcing as a consequence of the CO$_2$ rising in the atmosphere (Sitch et al., 2007; Ainsworth et al., 2012). This CO$_2$ rising reduces stomatal conductance which decreases O$_3$ flux into plants leading to increased O$_3$ levels in the air of 3-4 ppb during the growing season over the NH by doubling of CO$_2$ concentration (Fiscus et al., 2005; Sanderson et al., 2007).

Projected changes in tropospheric O$_3$ vary considerably among models (Stevenson et al., 2006; Wild, 2007) and emission scenarios. In earlier studies, the emissions of O$_3$ precursors were based on a high population growth, leading to very high projected surface O$_3$ concentrations by 2100 (Stevenson et al., 2000; Zeng and Pyle, 2003; Shindell et al., 2006). The last emission scenarios, i.e. the Representative Concentration Pathways (RCPs) were developed as part of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Meinshausen et al., 2011; van Vuuren et al., 2011; Cubasch et al., 2013; Myhre et al., 2013). These scenarios include e.g. different assumptions on climate, energy access policies, and land cover and land use changes (Arneth et al., 2008; Kawase et al., 2011; Kirtman et al., 2013). Until now, studies on O$_3$ pollution impacts on terrestrial ecosystems are either limited to a single model or to particular regions (e.g. Clifton et al., 2014; Rieder et al., 2015) and only a few applications of global or regional models under the new RCPs scenarios.
were carried out (Kelly et al., 2012). In the framework of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), different simulations were performed by Lamarque et al. (2013) and Young et al. (2013) from 16 global chemistry models.

A few issues about surface O\textsubscript{3}, such as a better understanding of spatial changes and a better assessment of O\textsubscript{3} impacts worldwide, are still challenging. To overcome these issues, the aim of this study is to quantify, for the first time, the spatial and temporal changes in the projected potential O\textsubscript{3} impacts on carbon assimilation of vegetation at global scale, by comparing the O\textsubscript{3} potential injury at present with that expected at the end of the 21st century from different global chemistry models.

Materials and Methods

ACCMIP models and RCP scenarios

The global chemistry models used in this work have been developed under the ACCMIP project. A detailed description of the selected models and of the emission scenarios (i.e. RCPs) is included in Supplementary Information (SI). ACCMIP models have been widely validated and used to evaluate projected changes in atmospheric chemistry and air quality under different emission and climate assumptions (e.g. Lamarque et al., 2010; Fiore et al., 2012; Bowman et al., 2013; Lee et al., 2013; Voulgarakis et al., 2013). Lamarque et al. (2013) and Young et al. (2013) provided the main characteristics of 16 models and details for the ACCMIP simulations. Although within the ACCMIP project 16 models are available, due to the lack of hourly O\textsubscript{3} concentration here we only focus on 6 global chemistry models with different configurations (Table 1).

The length of historical and RCP simulations vary between models, but for all models the historical runs cover a period centered around 2000, while the time-slice of RCPs is centered around 2100 (Table 1). As for each model we compare the mean change between the historical and RCP simulations, a different length in the number of years used in the analysis does not affect the results.

Potential ozone injury on vegetation

The O\textsubscript{3} exposure-based index, i.e. AOT40 (ppb h), is a metric used to assess the potential O\textsubscript{3} risk to vegetation from local to global scales (Emberson et al., 2014). It is computed as sum
of the hourly exceedances above 40 ppb, for daylight hours (8am-8pm) over species-specific growing seasons (UNECE, 2010). A recent study over Europe showed how computing AOT40 only over the growing season (i.e. April-September) would lead to an underestimation of AOT40 up to 50% for conifer trees, while in case of deciduous trees the underestimation is much smaller (< 5%, Anav et al., 2016). Besides, it should be noted that in Anav et al. (2016) the AOT40 is computed year-round when the stomatal conductance is greater than 0. Here, because of the lack of hourly meteorological data, we can only compute the AOT40 year-round and during the daylight hours. In case of risk assessment, this approach would lead to a relevant overestimation of AOT40, mainly over polluted area of NH. Nevertheless, since the aim of this study is to compare how O₃ stress to vegetation changes between historical period and future, the overestimation of AOT40 does not affect our results. Therefore, we computed AOT40 as follows:

\[\text{AOT40} = \int_{01\text{jan}}^{31\text{dec}} \max(0, [O_3] - 40) \, dt \]

(1)

where \([O_3]\) is hourly O₃ concentration (ppb) simulated by the models at the lower model layer and \(dt\) is time step (1h). The function "maximum" ensures that only values exceeding 40 ppb are taken into account. The O₃ concentration to be used in AOT40 calculation should be at the top of the canopy; however, most of models used here provide O₃ concentrations at 90-120 m. Nevertheless, even if the O₃ concentration is simulated at different elevations above the sea level, as for each model we compare the variation between present and future, the change is consistent because the elevation is the same. For the protection of forests, a critical level of 5,000 ppb.h (or 5 ppm.h) is recommended by UNECE (2010). Within the 2008/50/CE Directive, the critical level for agricultural crops (3 ppm.h) is adopted as the long-term objective value for the protection of vegetation by 2020.

From the AOT40, a factor of risk for forests and crops can be computed (Anav et al. 2011; Proietti et al. 2016). Thus, the potential O₃ impact on photosynthetic assimilation (IO₃) is expressed as following:

\[\text{IO₃} = \alpha \times \text{AOT40} \]

(2)

where \(\alpha\) is an empirically derived O₃ response coefficient representing the proportional change in photosynthesis per unit of ozone-uptake (Anav et al., 2011). The coefficient for coniferous trees (0.7×10⁻⁶ mm⁻¹ ppb⁻¹) and crops (3.9×10⁻⁶ mm⁻¹ ppb⁻¹) are based on the
regressions of the ozone-uptake response curves (Reich, 1987), while the coefficient for deciduous trees and other vegetation types (2.6×10^{-6} \text{ mm}^{-1} \text{ ppb}^{-1}) is based on Ollinger et al. (1997). From changes in the risk factor, we can highlight potential risk areas for vegetation.

Results and Discussion

Although differences in the simulated global O\textsubscript{3} spatial pattern were previously discussed and analyzed (e.g. Lamarque et al., 2013), we show the mean annual O\textsubscript{3} concentration at the lower model layer in Figure 1 because O\textsubscript{3} concentration explains AOT40 patterns. Then, in Figure 2 we show and discuss the AOT40 spatial and temporal distribution from the ACCMIP models for the historical and RCPs simulations, and finally in Figure 3 we show the percentage of variation of IO3, i.e. the change in the potential impact of O\textsubscript{3} on vegetation for the ACCMIP models computed comparing the RCPs simulations with historical runs. A detailed description of each figure, model by model, is included in Supplementary Information (SI).

Spatial pattern of historical ozone concentration and AOT40

The highest surface O\textsubscript{3} concentrations (Fig. 1) and potential O\textsubscript{3} injury (Fig. 2) are found in the NH, highlighting a hemispheric asymmetry. The multi-models O\textsubscript{3} mean concentration, averaged over the land points of the domain, is 37.9 ± 4.3 ppb in NH and 22.9 ± 3.8 ppb in SH (Table 3a). The NH extratropics (i.e. mid-latitudes beyond the tropics) has 65% more O\textsubscript{3} than the SH extratropics (data not shown). The highest AOT40 values are found in the NH, with an averaged AOT40 of 24.8 ± 10.1 ppm.h in NH and 2.5 ± 1.7 ppm.h in SH (Table 3a).

According to previous studies, the annual mean background O\textsubscript{3} concentrations at NH mid-latitudes range between 35 and 50 ppb during the end of the 20th century (e.g. Cooper et al., 2012; IPCC, 2014; Lefohn et al. 2014). Similarly, we found historical surface O\textsubscript{3} mean concentrations ranging between 35 and 50 ppb and 35-50 ppm.h for AOT40 in the NH, with the highest values occurring over Greenland and in the latitude band 15-45\degree N, particularly around the Mediterranean basin, Near East, Northern America and over the Tibetan plateau (> 50 ppb and 70 ppm.h) while the lowest O\textsubscript{3} burden (15-30 ppb, < 20 ppm.h) was recorded in SH, particularly over Amazon, African and Indonesian rainforests. Tropospheric O\textsubscript{3} has a significant source from stratospheric O\textsubscript{3} (Parrish et al., 2012) and it can be transported by the large-scale Brewer-Dobson overturning circulation, i.e. an upward motion from the tropics and downward at higher latitudes, resulting in higher O\textsubscript{3} concentrations in the extratropics.
(Hudson et al., 2006; Seidel et al., 2008; Parrish et al., 2012). The six models are able to reproduce the spatial pattern of \(O_3\) concentration and thus AOT40 worldwide.

The highest historical \(O_3\) mean concentrations are observed in GFDL-AM3 and the lowest are found in MIROC-CHEM. In the early 2000s, the maximum global \(O_3\) mean concentration (39 ppb) in GFDL-AM3 is associated to the lowest annual total NOx emissions (46.2 Tg, Table 2a) and low LNOx (4.4 Tg) while the minimum global \(O_3\) mean concentration (28 ppb) in MIROC-CHEM is related to the highest emissions of total NOx per year (57.3 Tg) and erroneously high LNOx (9.7 Tg per year, Lamarque et al., 2013). MIROC-CHEM simulates 58 gaseous species in the chemical scheme with constant present-day biogenic VOCs emissions while GFDL-AM3 simulates 81 species (Stevenson et al., 2012; Lamarque et al., 2013). In GISS-E2-R, the hemispheric asymmetry in \(O_3\) is more important with e.g. a mean concentration of 22 ppb in SH and 42 ppb in NH. A stronger global AOT40 mean (26 ppm.h) is observed in GISS-E2-R and the lowest (7 ppm.h) in MIROC-CHEM for historical simulations. Model-to-model differences are observed due to different natural emissions of \(O_3\) precursors (e.g. lightning NOx) and the used chemical schemes.

Higher \(O_3\) burdens (mean concentration > 50 ppb, AOT40 >70 ppm.h) are simulated at high-elevation areas, e.g. at Rocky and Appalachian Mountains and over the Tibetan plateau (Fig. 1, Fig. 2). At high-elevation, solar radiation, biogenic VOC emission, exchange between free troposphere and boundary layer, and stratospheric \(O_3\) intrusion within the troposphere are more important that at the surface layer (Steinbacher et al. 2004; Kulkarni et al., 2011; Lefohn et al., 2012). Altitude reduces the \(O_3\) destruction by deposition and NO (Chevalier et al., 2007). In addition, due to the high elevation, ambient air remains colder and dryer in summer, leading to lower summertime \(O_3\) losses from photolysis (Helming et al., 2007). The high-elevation areas, characterized by higher \(O_3\) burdens, are well simulated in GISS-E2-R and MOCAGE models.

The Tibetan plateau, so-called “ozone valley”, is the highest plateau in the world, with a mean height of 4000 m a.s.l. (Tian et al., 2008) with strong thermal and dynamic influences on regional and global climate (Chen et al. 2011). High surface \(O_3\) mean concentrations (40-60 ppb) were reported in previous studies (e.g. Zhang et al., 2004; Bian et al., 2011; Guo et al., 2015; Wang et al., 2015). Although this region is remote, road traffic, biofuel energy source, coalmines and trash burning are prevalent. These pollution sources contribute to significant
amount of NOx, CO and VOCs (Wang et al., 2015). The high O₃ levels are attributed to the combined effects of high-elevation surface, thermal and dynamical forcing of the Tibetan plateau and in-situ photochemical production in the air trapped in the plateau by surrounding mountains (Guo et al., 2015; Wang et al., 2015). The dynamic effect, associated with the large-scale circulation, is more important than the chemical effect (Tian et al., 2008; Liu et al., 2010) and responsible for the high O₃ levels over the Tibetan plateau. The six models are able to well reproduce the high surface O₃ mean concentrations (> 50 ppb) over the Tibetan plateau.

Higher O₃ mean concentrations (> 60 ppb) are also observed in Southwestern U.S., at the stations inland close to Los Angeles, in Northeastern U.S. and East Asia (e.g. Beijing) (Fig. 1). The American Southwest is an O₃ precursor hotspot where the industrial sources emit CH₄ and VOCs into the air (Jeričević et al., 2013) and the eastern and northern desert areas have higher ambient O₃ than urban areas of southern California due to four factors: on-shore winds, gasoline reformulation, eastward population expansion and nighttime air chemistry (Arbaugh and Bytnerowicz, 2003). The surface concentrations show higher O₃ levels in areas downwind of O₃ precursor sources, i.e. urban and well-industrialized areas, at distances of hundreds or even thousands of kilometers due to transport of O₃ and precursors, including “reservoir” species such as PAN, lower O₃ titration by NO and higher biogenic VOC emission (Wilson et al., 2012; Paoletti et al., 2014; Monks et al., 2015; Sicard et al., 2016a). The higher O₃ levels in areas downwind of O₃ precursor sources are well simulated in GISS-E2-R and MOCAGE models.

In the lower troposphere, O₃ can be removed by a large number of chemical reactions and by dry deposition (Sicard et al., 2016c). The O₃ dry deposition rates range from 0.01-0.05 cm s⁻¹ (oceans and snow) to 0.15-1.80 cm s⁻¹ for mixed wood forests (Wesely and Hicks, 2000; Zhang et al., 2003). The model performance is also related to the parameterization of the dry deposition rates.

Over Greenland, mean O₃ concentrations during the historical runs, ranged from 40 to 55 ppb (Fig. 1) except in MIROC-CHEM (20-25 ppb). Similarly, Helmig et al. (2007) reported annual mean of surface O₃ concentrations of 47 ppb over Greenland between 2000 and 2005, particularly at the high-elevation Summit station (3200 m a.s.l.). Several investigations, about snow photochemical and oxidation processes over Greenland, concluded that photochemical
O₃ production can be attributed to high levels of reactive compounds (e.g. oxidized nitrogen species) present in the surface layer during the sunlit periods due to local sources e.g. NOx enhancement from snowpack emissions, Peroxyacetyl nitrate (PAN) decomposition, boreal forest fires or ship emissions (Granier et al., 2006; Stohl et al., 2007; Legrand et al., 2009; Walker et al., 2012). PAN to NOx ratio increases with increasing altitude and latitude (Singh et al., 1992). The PAN reservoir for NOx may be responsible for the increase in surface O₃ concentrations at high latitudes (Singh et al., 1992). Local O₃ production does not appear to have an important contribution to the ambient high O₃ levels (Helmig et al., 2007), however the long-range O₃ transport can elevate the background concentrations measured at remote sites, e.g. Greenland (Ellingsen et al., 2008; Derwent et al., 2010). Low dry deposition rates for O₃, the downward transport of stratospheric O₃, the photochemical local production and the large-scale transport (Legrand et al., 2009; Walker et al., 2012; Hess and Zbinden, 2013) are known factors to explain higher O₃ pollution over Greenland.

The surface O₃ concentrations (> 40 ppb) and AOT40 (> 60 ppm.h) are higher over deserts, downwind of O₃ precursor sources (e.g. Near East, Sierra Nevada, Colorado Desert), due to lower O₃ dry deposition fluxes, O₃ precursors long-range transport from urbanized areas and high insolation. Around the Mediterranean basin, elevated AOT40 values (> 60 ppm.h) are recorded, mainly due to the industrial development, road traffic increment, high insolation, sea/land breeze recirculation and O₃ transport (Sicard et al., 2013). All models, except MIROC-CHEM, are able to well reproduce the high surface O₃ mean concentrations over Greenland and over deserts.

Projected changes in ozone concentration and AOT40

Recent studies display a mean global increase in background O₃ concentration from a current level of 35-50 ppb (e.g. IPCC, 2014; Lefohn et al. 2014) to 55-65 ppb (e.g. Wittig et al., 2007) and up to 85 ppb at NH mid-latitudes by 2100 (IPCC, 2014). During the latter half of the 20th century surface O₃ concentrations have increased markedly at NH mid-latitudes (e.g. Oltmans et al., 2006; Parrish et al., 2012; Paoletti et al., 2014), mainly related to increasing anthropogenic precursor emissions related to economic growth of industrialized countries (e.g. Lamarque et al., 2005). Our results indicate that the future projections of the mean tropospheric O₃ concentrations and AOT40 vary considerably with the different scenarios and models (Fig. 1 and 2). The six models simulate a decrease of O₃ concentration by 2100 under the RCP2.6 and RCP4.5 scenarios, and an increase under the RCP8.5 scenario (Lamarque et
al., 2011). In our study, the averaged relative changes in surface O$_3$ concentration means (and AOT40) for the different RCPs are: -21% (-75%) for RCP2.6, -10% (-50%) for RCP4.5 and +14% (+69%) for RCP8.5 with a strong disparity between both hemispheres, e.g. -8% in SH and -25% in NH for RCP2.6 (Tables 3b-c). RCP8.5 is the only scenario to show an increase in global background O$_3$ levels by 2100 (+23% in SH and +11% in NH).

Under the RCP2.6 scenario, all models predict that tropospheric O$_3$ will strongly decrease worldwide, except in Equatorial Africa where higher O$_3$ levels are observed in GFDL-AM3, GISS-E2-R and MOCAGE. In CESM-CAM, GFDL-AM3 and MIROC-CHEM, a homogeneous decrease in O$_3$ burden is simulated worldwide while in GISS-E2-R, MOCAGE and UM-CAM, the strongest decrease in surface O$_3$ mean concentrations are found where high historical O$_3$ concentrations were reported. Under RCP4.5 scenario, the surface O$_3$ mean concentrations and AOT40 values are lower than historical runs worldwide for all models except in MOCAGE where deterioration is observed over Canada, Greenland and East Asia. For all models, the surface O$_3$ levels and AOT40 are higher for RCP8.5 as compared to historical runs and the highest increases occur in the Northwestern America, Greenland, Mediterranean basin, Near East and East Asia. The AOT40 values, exceeding 70 ppm.h, are found over the Tibetan plateau and in Near East and over Greenland. For RCP8.5, GFDL-AM3 is the most pessimistic model and MIROC-CHEM the most optimistic. By the end of the 21st century, similar patterns are evident for RCP4.5 compared to RCP2.6 and RCP4.5 simulation is intermediate between RCP2.6 and RCP8.5 ones.

For all models and RCPs, the O$_3$ hot-spots (mean concentrations > 50 ppb and AOT40 > 70 ppm.h) are over Greenland and South Asia, in particular over the Tibetan plateau. The highest increases are observed in NH, in particular in Northwestern America, Greenland, Near East and South Asia (> 65 ppb). For the three RCPs, no significant change in tropospheric O$_3$ is observed in SH and the SH extratropics makes a small contribution to the overall change.

A recent global study showed the geographical patterns of surface air temperature differences for late 21st century relative to the historical run (1986-2005) in all RCP scenarios (Nazarenko et al., 2015). The global warming in the RCP2.6 scenario is 2-3 times smaller than RCP4.5 scenario and 4-5 times smaller than RCP8.5 scenario (Nazarenko et al., 2015). For the three RCPs, the greatest change is observed over the Arctic, above latitude 60°N, and in the latitude band 15-45°N (IPCC, 2014; Nazarenko et al., 2015). The least warming is simulated over the
large area of the Southern Ocean. For RCP8.5 scenario, the global pattern of surface O$_3$ levels and AOT40 (Fig. 1-2) is similar to surface air temperature increase distribution. For RCP8.5, significant increases in air temperature are simulated over latitude 60°N and over the Tibetan plateau (more than 5°C). An increase of 4-5°C over the Near East, East and South Asia, North and South Africa and Canada are simulated as well as + 1-3°C for the rest of the world (Nazarenko et al., 2015). The tropospheric warming is stronger in the latitude band 15-45°N (Seidel et al., 2008) and Hudson et al. (2006) have demonstrated that O$_3$ trends over a 24-year period in the NH are due to trends in the relative area of the tropics and mid-latitudes and Polar Regions. All models are able to reproduce the global pattern of air temperature changes in agreement with surface O$_3$ concentrations changes.

The spread in precursor emissions (e.g. VOCs, NOx, CO) is due to the range of representation of biogenic emissions (NOx from soils and lightning, CO from oceans and vegetation) as well as the complexity of chemical schemes in particular for NMVOCs simulations (e.g. isoprene) from explicitly specified to fully interactive with climate. RCP2.6 scenario has the lowest O$_3$ precursor concentrations, and RCP8.5 has relatively low NOx, CO and VOCs emissions, but very high CH$_4$ (Table 2b). The global emissions of NOx (-44%), VOCs (-5%) CO (-40%) and CH$_4$ burden (-27%) decline, while LNOx increase by e.g. 7% under RCP2.6 (Table 2b). The CO (-32%) and NOx (-20%) emissions have decreased while LNOx (+33%), VOCS (+1%) and CH$_4$ burden have increased (+120%) under RCP8.5 scenario (Table 2b). The GISS-E2-R model shows a greater degree of variation than other models, with a stronger increase in CH$_4$ burden (+153%) and in VOCs emissions (+20%) for RCP8.5 (Table 2b).

Excluding CH$_4$ burden and VOCs emissions, all the RCPs include reductions and redistributions of O$_3$ precursor emissions throughout the 21st century, due to the air pollution control strategies worldwide. The changes in CH$_4$ burden are due to the different climate policies in model assumptions. In RCP2.6, CH$_4$ emissions decrease steadily throughout the century, in RCP4.5 it remain steady until 2050 and then decrease (Voulgarakis et al., 2013) and in RCP8.5 (no climate policy) it rapidly increase compared to 2000. Methane burdens are fixed in the models with no sources, except for the GISS-E2-R simulations in which surface CH$_4$ emissions are prescribed for future rather than concentrations (Shindell et al., 2012). The model chemical schemes vary greatly in their complexity, mainly due to the NMVOCs simulations (Young et al. 2013). Isoprene dominates the total NMVOCs emissions (Guenther et al., 1995). Inversely to other models with constant present-day isoprene emissions, the
GISS-ES2-R simulations incorporate climate-driven isoprene emissions, with greater BVOC emissions by 2100 and a positive change in total VOCs emissions across RCPs, related to the positive correlation between air temperature and isoprene emission (e.g. Guenther et al., 2006; Arneth et al., 2011; Young et al., 2013).

For RCP2.6 and RCP4.5 scenarios, there is a widespread decrease in O$_3$ in NH by 2100. The overall decrease in O$_3$ concentration and AOT40 means for RCP4.5 are about half of that between RCP2.6 and the historical simulation. For both scenarios, the changes are dominated by the decrease in O$_3$ precursor emissions in the NH extratropics compared to historical simulations (Table 2b). In NOx saturated areas, annual mean O$_3$ will slightly increase as a result of a less efficient titration by NO, but the overall O$_3$ burden will decrease substantially at hemispheric scale over time (Gao et al., 2013; Querol et al., 2014; Sicard et al., 2016a). In RCP4.5, Gao et al. (2013) showed that the largest decrease in O$_3$ (4-10 ppb) occurs in summer at mid-latitudes in the lower troposphere while the O$_3$ concentrations undergo an increase in winter. During the warm period, the photochemistry plays a major role in the O$_3$ production, suggesting that the reduction in surface O$_3$ concentrations is in agreement with the large reduction in anthropogenic O$_3$ precursor emissions (Sicard et al., 2016a) reducing the extent of regional photochemical O$_3$ formation (e.g. Derwent et al., 2013; Simpson et al., 2014). Titration effect was also reported by Collette et al. (2012) over Europe by using six chemistry transport models.

The O$_3$ increase can be also driven by the net impacts of climate change, i.e. increase in stratospheric O$_3$ intrusion, changing LNOx and impacting reaction rates, through sea surface temperatures and relative humidity changes (Lau et al., 2006; Voulgarakis et al., 2013; Young et al., 2013).

Under the RCP8.5 scenario, the increase in surface O$_3$ concentrations, by 14% on average, can be attributed to the higher CH$_4$ emissions coupled with a strong global warming, exceeding 2°C, and a weakened NO titration by reducing NOx emissions (Stevenson et al., 2013; Young et al., 2013). The global CH$_4$ burden are 27% and 5% lower than 2000, for the RCP2.6 and RCP4.5 scenarios respectively while for RCP8.5, the total CH$_4$ burden has more than doubled compared to early 2000s and LNOx emissions increased by 33% (Table 2b). In addition, stronger increases are found over the high-elevation Himalayan Plateau reflecting increased exchange with the free troposphere or stratosphere (Lefohn et al., 2012; Schnell et al., 2016).
Several studies reported an increase in the stratospheric O$_3$ influx and higher stratospheric O$_3$ levels in response to a warming climate (e.g. Hegglin and Shepherd, 2009; Zeng et al., 2010).

The downwards O$_3$ transport from the stratosphere is an important source of tropospheric O$_3$ (Hsu and Prather, 2009; Tang et al., 2011), therefore, stratospheric O$_3$ recovery also plays a partial role (e.g. + 11% for RCP8.5) in surface O$_3$ burden pattern. As an example, in MOCAGE, smaller reduction in global O$_3$ mean concentrations (-13%) and higher increase in stratospheric O$_3$ inputs (+20%) are observed for RCP2.6 (Table 3b). Similarly, for RCP8.5, the highest increase in O$_3$ mean concentrations (+23%) and stratospheric O$_3$ (+24%) are recorded in MOCAGE. In addition, lightning NOx emissions show significant upward trend from 2000 to 2100, in particular for the strongest warming scenario (RPC8.5) with greater convective and lightning activity (e.g. Williams, 2009; Lamarque et al., 2013). For RCP8.5, a reduction in surface O$_3$ concentrations is also simulated over the equatorial region, where the increased relative humidity, in a warmer climate, increases the O$_3$ loss rate (e.g. Johnson et al., 1999; Zeng and Pyle, 2003).

Risk areas for vegetation under RCP scenarios

Figure 3 shows the changes in the potential O$_3$ injury between present and future. It should be noted that a zero percentage of change (i.e. no change) for IO3, is simulated in sparsely vegetated regions (e.g. Gobi, Sahara, Near East, Western plateau and Greenland), while the change can be higher than 100% when the historical O$_3$ concentrations are lower than 40 ppb (i.e. AOT40 = 0 and IO3 = 0) and the O$_3$ concentrations exceed 40 ppb under RCPs (i.e. AOT40 > 0, IO3 > 0).

The potential O$_3$ impact for vegetation strongly decreases in NH for RCP2.6, except in MOCAGE where a slight increase in the risk factor (+ 15 %) is simulated at high latitudes and in South Asia. Conversely, the areas where the risk for vegetation increases (> 60 %) occur over Africa (+ 15% to + 60%) for all models, except in CESM-CAM where no change is observed across Africa. Under RCP4.5 scenario, the strongest increase in potential risk for vegetation (> + 60 %) is simulated by MOCAGE, markedly different from the other models, above the latitude 50°N. For all models, the potential O$_3$ impact for vegetation increases across Africa, from - 15% to + 60% while slight decreases or no change occur worldwide. Under RCP8.5 scenario, an increase of average O$_3$ over a significant part of the domain is simulated, therefore the exposure to O$_3$ pollution and impacts on vegetation will increase worldwide by 2100. An increase of the O$_3$ impacts on vegetation is simulated in Northern...
U.S., South America, Asia and Africa while a reduction in particular over Eastern U.S. and Southeastern China, and a slight increase (+ 15%) or decrease (- 15%) over Europe depending on the model, are simulated.

In summary, compared to the historical simulations, the averaged relative changes in the O$_3$ risk factor for the different RCPs are: - 61% for RCP2.6, - 47% for RCP4.5 and + 70% for RCP8.5 (Table 3d). We thus find a significant reduction in risk for vegetation for both RCP2.6 and RCP4.5 scenarios, except in South Africa and at high-latitudes in MOCAGE simulations, and a strong increase in global risk under RCP8.5. Under RCP2.6 and RCP4.5 scenarios, IO3 slightly increases in Africa and over North America and Asia (> latitude 60°N) in MOCAGE. The risk increases over the few areas where the O$_3$ concentrations increased between the historical period and 2100. Under both scenarios, the strongest reductions in risk are observed over Amazon, Central Africa and South Asia, i.e. where the O$_3$ concentrations have strongly declined between historical period and 2100. Under the RCP8.5, the areas where the highest projected O$_3$ mean concentrations are simulated (e.g. Greenland, deserts) are not associated to an increase in IO3 due to the absence of vegetation. Under RCP8.5, IO3 increases worldwide while a reduction is simulated over Southeast North America, northern Amazon, Central Africa and Southeast Asia, and a slighter reduction or a slight increase is simulated over Western Europe (depending on the model).

The spatial pattern of IO3 is consistent with previous analyses on climate change and O$_3$ impacts on vegetation (e.g. Nemani et al., 2003; Zhu et al., 2016), i.e. the highest reduction in risk for vegetation, in particular under RCP8.5, occurs over areas where a strong increase in greening, LAI and NPP is observed due to global change and where a reduction in O$_3$ mean concentrations is found by 2100 (Fig. 1). The regions with the largest greening trends are in Southeast North America, northern Amazon, Europe, Central Africa and Southeast Asia with an average increase of the observed LAI exceeding 0.25 m2 m$^{-2}$ per year (Zhu et al., 2016). The CO$_2$ fertilization effects (70%), nitrogen deposition (9%) and climate change (8%) explain the observed greening trend (Zhu et al., 2016). The changing climate alone produces persistent NPP increases and the regions with the highest increase in NPP, ranging from 1.0-1.5% per year, are in Southeast North America, northern Amazon, Western Europe, Central Africa and South Asia (Nemani et al., 2003). NPP increased by 6% globally between 1982 and 1999 and the highest increases are observed in tropical regions, with more than 1.5% per year over Amazon rainforest which accounts for 42% of the global NPP increase (Nemani et
Amazon rainforest is one region where the effects are statistically significant. This is particularly important owing to the role of the Amazon rainforests in the global carbon cycle (Zhu et al., 2016). In these areas, the increasing effect of a warming climate on forests (e.g. increase of greening, LAI) is higher than the reduction in GPP due to O$_3$. Inversely, the risk for vegetation increases in particular in Africa, e.g. western Africa along the Gulf of Guinea, in South Brazil and over high-latitude regions (> 60°N) in North America and Asia where a reduction or a slight increase in LAI (from -0.05 to +0.03 m2 m$^{-2}$ per year) and strong decreases, by 1.0-1.5% per year, in NPP are simulated (Nemani et al., 2003; Zhu et al., 2016).

Our results are not in agreement with the high GPP reduction, due to O$_3$ effects, simulated by Sitch et al. (2007) between 1901 and 2100, with a projected GPP reduction exceeding 30% over Western Europe, eastern and western North America, Amazon, central Africa and East Asia where higher surface O$_3$ mean concentrations were projected. Previous studies reported that the reductions in GPP simulated by Sitch et al. (2007) are overestimated up to six times (Ren et al., 2011; Zak et al., 2011; Kvaleveg and Myhre 2013), mainly due to the lack of empirical data about the response of different species to O$_3$, the fact that a few experiments have shown no response, e.g. grasslands (Bassin et al., 2013), and the non-inclusion of the nitrogen limitation of growth (Kvalevag and Myhre, 2013).

The projected land covers widely vary under RCPs (Betts et al., 2015). In RCP2.6 scenario, the ground surface covered by croplands increases as a result of bio-energy production, with a more-or-less constant use of grassland. The RCP4.5 scenario focuses on global reforestation programs as part of global climate policy, as a result, the use of cropland and grassland decreases. Under RCP8.5, an increase in croplands and grasslands is applied mostly driven by an increasing global population (van Vuuren et al., 2011). Generally, the risk for vegetation strongly increases over shrublands (e.g. high-latitude region, Australia, South Africa) and savannas (e.g. South Brazil, Africa) and the risk decreases over forests, strongly over evergreen broadleaf forest and deciduous woodland over Africa and Amazon rainforests, and slighter over needleleaf forests in Northern America (Canada) and Northern Asia. The risk slightly decreases or slightly increases over grasslands (Central Asia and central Africa and U.S.). The largest decreases (50-80%) under RCP8.5 occur in Eastern U.S., Europe and Southeastern China, where the ground is mainly dominated by croplands, in all models except CESM-CAM.
Conclusions

From six global atmospheric chemistry transport models, we illustrate the changes, i.e. differences for late 21st century relative to the historical run, in ground-level O\textsubscript{3} concentrations and vegetation impact metric (AOT40). In fine, the potential O\textsubscript{3} impacts on vegetation worldwide are investigated to define potential risk areas for vegetation at global scale by 2100.

The six models are able to well reproduce the spatial pattern of historical O\textsubscript{3} concentration and AOT40 at global scale, in particular GISS-E2-R and MOCAGE are able to simulate the higher O\textsubscript{3} levels in areas downwind of precursor sources and at the high-elevation areas. The model outputs emphasize the strong asymmetry in the tropospheric O\textsubscript{3} distribution between NH and SH; substantially higher O\textsubscript{3} mean concentrations are observed in the NH (ca. 38 ppb), particularly in the latitude band 15\textdegree-45\textdegree N, than in the SH (ca. 23 ppb). The natural emissions of O\textsubscript{3} precursors (e.g. lightning NOx, CO from oceans, isoprene) as well as the complexity of chemical schemes are significant sources of model-to-model differences.

In this study, the projected mean tropospheric O\textsubscript{3} concentrations and AOT40 dependent on global and regional emission pathways. Compared to early 2000s, the results suggest changes in surface O\textsubscript{3} of - 9.5 ± 2.0 ppb (NH) and - 1.8 ± 2.1 ppb (SH) in the cleaner RCP2.6 scenario and of + 4.4 ± 2.8 ppb (NH) and + 5.1 ± 2.1 ppb (SH) in RCP8.5 scenario. For RCP2.6 and RCP4.5, absolute decreases are observed for the Mediterranean basin and the Western U.S. due to less precursor emissions in the NH extratropics (e.g. reduction of 5-7 ppb over Europe). Smaller reduction in surface O\textsubscript{3} levels in South and East Asia highlight the smaller changes in O\textsubscript{3} precursor emissions due to the recent emission growth in this region (e.g. Zhang et al., 2009; Xing et al., 2015). For RCP8.5, all models show climate-driven increases in ground-level O\textsubscript{3} in particular over the Western U.S, Greenland, South Asia and Northeast China. The changes in surface O\textsubscript{3} over North America and Europe ranged from + 1-5 ppb under RCP8.5. South Asia sees the greatest increase, up to more than 10 ppb for RCP 8.5. The O\textsubscript{3} increase can be attributed to substantial increase in CH\textsubscript{4} emissions coupled with a strong global warming, exceeding 2\textdegree C, and a weakened NO titration and a greater stratospheric O\textsubscript{3} influx (Kawase et al., 2011; Wild et al., 2012; Young et al., 2013). A decline in CH\textsubscript{4} emissions will undoubtedly benefit future O\textsubscript{3} control.
The current surface O\(_3\) levels (35-50 ppb in NH) are high enough to damage both forests and crops. About 50% of forests, grasslands and croplands might be exposed to high O\(_3\) levels by the end of the 21\(^{th}\) century (Sitch et al., 2007; Wittig et al. 2009). Most important results from the study are the significant overrun of exposure metric (AOT40) in comparison with the AOT40-based critical level for the protection of forests (5 ppm.h) and crops (3 ppm.h). The global models suggest that exposure-based critical levels will be exceeded over many areas of the NH, and in parts of North America, East and South Asia they may be exceeded by a factor exceeding 10 under RCP8.5. The critical level were defined for boreal and temperate deciduous tree species, i.e. more consistent for regions in the latitude band 35-60\(^{\circ}\)N. To protect vegetation, the current AOT40 index appears inadequate for a realistic quantification of O\(_3\) impacts on vegetation (Paoletti and Manning, 2007; Mills et al., 2011; De Marco et al., 2015; Sicard et al., 2016b,c). As a result, in the last decade, the United Nations Convention on Long-Range Transboundary Air Pollution (CLRTAP) has introduced the flux-based metric for vegetation protection against effects of O\(_3\), taking into account the modifying effects of multiple climatic and phenological factors on O\(_3\) uptake (Paoletti and Manning, 2007; Sicard et al., 2016b,c).

Ozone may be a major threat to biodiversity over large regions of the world (Sicard et al., 2016b), however the size of these areas remains uncertain. The potential O\(_3\) impact on assimilation, IO3, provides a clear indicator of the potential risk to vegetation. The risk for vegetation decreases by about 61% and 47% under RCP2.6 and RCP4.5, respectively and increases by 70% under RCP8.5, compared to early 2000s over the whole domain by 2100 and that the potential risk areas for vegetation vary worldwide according to the dominant vegetation cover. The strongest increase of the O\(_3\) impacts on vegetation is simulated in Northern America and Asia and central Africa. The highest reduction in risk for vegetation (i.e. Southeast North America, the northern Amazon, Central Africa and Southeast Asia) occurs over areas where a strong increase in greening, LAI and NPP is observed and where a reduction in O\(_3\) mean concentrations is found by 2100.

Trees possess a defence capacity, e.g. through antioxidant activity and a capacity of repairing injured tissues (Paoletti, 2007). The short-term response to O\(_3\) is a reduction in productivity of crops and forests and long-term changes in community composition could be observed due to species-specific O\(_3\)-sensitivity (Wittig et al., 2009). Generally, deciduous woodland are highly O\(_3\)-sensitive risk areas, grasslands and needleleaf forests are moderately O\(_3\)-sensitive risk
areas while the lower risk areas include evergreen broadleaf forests. However, crops are more sensitive to \(O_3 \) exposure than trees and deciduous trees are more sensitive than coniferous trees with lower stomatal conductance (Felzer et al., 2004; Ren et al., 2007; Wittig et al. 2009; Anav et al., 2011). To efficiently protect vegetation against \(O_3 \) pollution, suitable standards taking into account the detoxification processes (e.g. flux-based metric) are urgently needed.

As the vegetation atmosphere feedbacks are still under investigated, e.g. impacts of changes of vegetation on air chemistry, we recommend the use of improved chemistry-climate modelling system, fully coupled with dynamic vegetation models, to perform high resolution simulations and to better evaluate the regional exposure of ecosystems to air pollution.

The risk reduction is possible through climate-change mitigation, e.g. reductions in air pollution, and adaptation actions. An efficient reduction in overall \(O_3 \) levels is expected over North America and Europe in all RCP scenarios and worldwide if \(CH_4 \) emissions are reduced (e.g. Kirtman et al., 2013; Pfister et al., 2014; Schnell et al., 2016). However, the increasing effect of a warming climate on surface \(O_3 \) concentrations is higher than the reduction achieved by the decline in \(O_3 \) precursor emissions (Revell et al., 2015; Hendriks et al., 2016), therefore, climate change and the measures and policies in e.g. Asia will need to be factored into future \(O_3 \) policies (Wilson et al., 2012; Lefohn and Cooper, 2015). Many ecosystems worldwide are unprotected from \(O_3 \) due to the lack of international efforts (Emberson et al., 2014). To be efficient, the mitigation actions for \(O_3 \) impacts on biodiversity must be as part of international emission reduction programmes.

Acknowledgements

This work was carried out with the contribution of the LIFE financial instrument of the European Union (LIFE15 ENV/IT/183) in the framework of the MOTTLES project “Monitoring ozone injury for setting new critical levels” and published within the International Union of Forest Research Organizations (IUFRO) Task Force on Climate Change and Forest Health.
Bibliographic references

Bassin S., Volk M., Fuhrer J., 2013, “Species composition of subalpine grassland is sensitive to nitrogen deposition, but not ozone, after seven years of treatment”. Ecosystems 16: 1105-1117

Hu X.M, Klein Petra M., Xue M. et al., 2013, “Impact of the vertical mixing induced by low-level jets on boundary layer ozone concentration”. Atmos. Environ. 70: 123-130

Paoletti E., De Marco A., Beddows D.C.S., Harrison R.M., Manning W.J., 2014, “Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing”. Environ. Pollut. 192: 295-299

Paoletti E. and Manning W.J., 2007, “Toward a biologically significant and usable standard for ozone that will also protect plants”. Environ. Pollut. 150: 85-95

Tian W., Chipperfield M., Huang Q., 2008, “Effects of the Tibetan Plateau on total column ozone distribution". Tellus 60B: 622-635

Figure 1: Surface ozone mean concentrations (in ppb) at the lower model layer for each ACCMIP model for the historical run and for RCP2.6, RCP4.5 and RCP8.5 simulations by 2100.
Figure 2: Surface AOT40 means (in ppm.h) at the lower model layer for each ACCMIP model for the historical run and for RCP2.6, RCP4.5 and RCP8.5 simulations by 2100.
Figure 3: Simulated percentage changes (%) in the potential ozone impact on vegetation (IO3) for each ACCMIP model between RCP2.6, RCP4.5 and RCP8.5 simulations and the historical run.
Table 1: Characteristics of the models, including simulation time slice, spatial resolution, simulated gas species and associated bibliographic references (from Lamarque et al., 2013 and Young et al. 2013). Black carbon (BC), Organic carbon (OC), Secondary Organic Aerosols (SOA), Dimethylsulfide (DMS), Chemistry Climate Model (CCM), Chemistry Transport Model (CTM), Chemistry-General Circulation Model (CGCM).

<table>
<thead>
<tr>
<th>Models</th>
<th>Type</th>
<th>Simulation length</th>
<th>Resolution (lat/lon)</th>
<th>Number of vertical pressure levels & top level</th>
<th>Species simulated</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CESM-CAM</td>
<td>CCM</td>
<td>2000-2009 and 2100-2109</td>
<td>1.875/2.5</td>
<td>26 levels 3.5 hPa</td>
<td>16 gas species; constant present-day isoprene, soil NOx, DMS and volcanic sulfur, oceanic CO.</td>
<td>Lamarque et al., 2012</td>
</tr>
<tr>
<td>GFDL-AM3</td>
<td>CCM</td>
<td>2001-2010 and 2101-2110</td>
<td>2.0/2.5</td>
<td>48 levels 0.017 hPa</td>
<td>81 gas species; SOx, BC, OC, SOA, NH₃, NO₃; constant pre-industrial soil NOx; constant present-day soil and oceanic CO, and biogenic VOC; climate-sensitive dust, sea salt, and DMS.</td>
<td>Donner et al., 2011 Naik et al., 2012</td>
</tr>
<tr>
<td>GISS-E2-R</td>
<td>CCM</td>
<td>2000-2004 and 2101-2105</td>
<td>2.0/2.5</td>
<td>40 levels 0.14 hPa</td>
<td>51 gas species; interactive sulfate, BC, OC, sea salt, dust, NOx, SOA, alkenes; constant present-day soil NOx; climate-sensitive dust, sea salt, and DMS; climate-sensitive isoprene based on present-day vegetation.</td>
<td>Lee and Adams, 2011 Shindell et al., 2012</td>
</tr>
<tr>
<td>MIROC-CHEM</td>
<td>CCM</td>
<td>2000-2010 and 2100-2104</td>
<td>2.8/2.8</td>
<td>80 levels 0.003 hPa</td>
<td>58 gas species; SO₄, BC, OC, constant present-day VOCs, soil-N Ox, oceanic CO, climate-sensitive dust, sea salt and DMS.</td>
<td>Watanabe et al., 2011</td>
</tr>
<tr>
<td>MOCAGE</td>
<td>CTM</td>
<td>2000-2003 and 2100-2103</td>
<td>2.0/2.0</td>
<td>47 levels 6.9 hPa</td>
<td>110 gas species; constant present-day isoprene, other VOCs, oceanic CO and soil NOx.</td>
<td>Josse et al., 2004 Krinner et al., 2005 Teyssèdre et al., 2007</td>
</tr>
<tr>
<td>UM-CAM</td>
<td>CGCM</td>
<td>2000-2005 and 2094-2099</td>
<td>2.50/3.75</td>
<td>19 levels 4.6 hPa</td>
<td>60 gas species; constant present-day biogenic isoprene, soil NOx, biogenic and oceanic CO.</td>
<td>Zeng et al., 2008, 2010</td>
</tr>
</tbody>
</table>
Table 2a: Annual total emissions of CO (Tg CO/year), NMVOCs (Tg C/year), NOx (Tg N/year, including lightning and soil NOx), total lightning NOx emissions (LNOx) and global atmospheric methane (CH$_4$) burden (Tg) for the historical simulations in each model (from Young et al., 2013 and * from Voulgarakis et al., 2013).

<table>
<thead>
<tr>
<th>Models</th>
<th>Historical CO</th>
<th>Historical CH$_4$</th>
<th>Historical NMVOCs</th>
<th>Historical NOx</th>
<th>Historical LNOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>CESM-CAM</td>
<td>1248</td>
<td>4902</td>
<td>429</td>
<td>50.0</td>
<td>4.2</td>
</tr>
<tr>
<td>GFDL-AM3</td>
<td>1246</td>
<td>4809</td>
<td>830</td>
<td>46.2</td>
<td>4.4</td>
</tr>
<tr>
<td>GISS-E2-R</td>
<td>1079</td>
<td>4793</td>
<td>830</td>
<td>48.6</td>
<td>7.7</td>
</tr>
<tr>
<td>MIROC-CHEM</td>
<td>1064</td>
<td>4805</td>
<td>833</td>
<td>57.3</td>
<td>9.7</td>
</tr>
<tr>
<td>MOCAGE</td>
<td>1168</td>
<td>4678</td>
<td>1059</td>
<td>47.9</td>
<td>5.2</td>
</tr>
<tr>
<td>UM-CAM</td>
<td>1148</td>
<td>4879</td>
<td>535</td>
<td>49.2</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Table 2b: Simulated percentage (%) changes in total emissions of CO, NMVOCs, NOx (including lightning and soil NOx), total lightning NOx emissions (LNOx) and global atmospheric CH$_4$ burden for each model between 2100 and historical simulation for RCPs (from Young et al., 2013 and *Voulgarakis et al., 2013). The last row shows means and standard deviations (SD). Missing or not available data are identified (n.a.).

<table>
<thead>
<tr>
<th>Models</th>
<th>RCP2.6 scenario</th>
<th>RCP4.5 scenario</th>
<th>RCP8.5 scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO</td>
<td>CH$_4$</td>
<td>VOCs</td>
</tr>
<tr>
<td>CESM-CAM</td>
<td>-36.7</td>
<td>-27.1</td>
<td>0</td>
</tr>
<tr>
<td>GFDL-AM3</td>
<td>-36.9</td>
<td>-27.9</td>
<td>-5.0</td>
</tr>
<tr>
<td>GISS-E2-R</td>
<td>-42.8</td>
<td>-21.0</td>
<td>+0.5</td>
</tr>
<tr>
<td>MIROC-CHEM</td>
<td>-43.1</td>
<td>-28.2</td>
<td>-7.1</td>
</tr>
<tr>
<td>MOCAGE</td>
<td>-39.4</td>
<td>-28.8</td>
<td>-6.5</td>
</tr>
<tr>
<td>UM-CAM</td>
<td>-39.0</td>
<td>-27.9</td>
<td>-11.3</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>-39.7 ± 2.2</td>
<td>-26.8 ± 3.7</td>
<td>-4.9 ± 4.9</td>
</tr>
</tbody>
</table>
Table 3a: Global and hemispheric (averaged over the domain) surface ozone mean concentrations (in ppb) and AOT40 means (in 10^4 ppm.h) for the historical simulations in each model (North and South Hemisphere, i.e NH and SH). The last row shows means and standard deviations (SD).

<table>
<thead>
<tr>
<th>Models</th>
<th>Ozone conc. global</th>
<th>Ozone conc. SH</th>
<th>Ozone conc. NH</th>
<th>AOT40 global</th>
<th>AOT40 SH</th>
<th>AOT40 NH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CESM-CAM</td>
<td>31.3</td>
<td>20.9</td>
<td>36.4</td>
<td>12.8</td>
<td>0.2</td>
<td>18.9</td>
</tr>
<tr>
<td>GFDL-AM3</td>
<td>38.6</td>
<td>30.6</td>
<td>42.9</td>
<td>21.8</td>
<td>4.7</td>
<td>30.8</td>
</tr>
<tr>
<td>GISS-E2-R</td>
<td>35.8</td>
<td>22.3</td>
<td>42.3</td>
<td>26.0</td>
<td>3.6</td>
<td>36.8</td>
</tr>
<tr>
<td>MIROC-CHEM</td>
<td>27.9</td>
<td>20.4</td>
<td>31.4</td>
<td>7.3</td>
<td>1.9</td>
<td>9.8</td>
</tr>
<tr>
<td>MOCAGE</td>
<td>32.9</td>
<td>21.5</td>
<td>38.3</td>
<td>22.9</td>
<td>3.5</td>
<td>31.8</td>
</tr>
<tr>
<td>UM-CAM</td>
<td>31.3</td>
<td>21.4</td>
<td>36.0</td>
<td>14.4</td>
<td>1.3</td>
<td>20.6</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>33.0 ± 3.8</td>
<td>22.9 ± 3.8</td>
<td>37.9 ± 4.3</td>
<td>17.5 ± 7.2</td>
<td>2.5 ± 1.7</td>
<td>24.8 ± 10.1</td>
</tr>
</tbody>
</table>

Table 3b: Simulated percentage (%) changes in global and hemispheric surface ozone mean concentrations and in global mean stratospheric ozone column (* from Voulgarakis et al., 2013) for each model between 2100 and historical simulation for RCPs (North and South Hemisphere, i.e NH and SH). The last row shows means and standard deviations (SD). Missing or not available data are identified (n.a.).
Table 3c: Simulated percentage (%) changes in global and hemispheric AOT40 means for each model between 2100 and historical simulation for RCPs (North and South Hemisphere, i.e NH and SH). Missing or not available data are identified (n.a).

<table>
<thead>
<tr>
<th>Models</th>
<th>RCP2.6 global</th>
<th>RCP2.6 SH</th>
<th>RCP2.6 NH</th>
<th>RCP4.5 global</th>
<th>RCP4.5 SH</th>
<th>RCP4.5 NH</th>
<th>RCP8.5 global</th>
<th>RCP8.5 SH</th>
<th>RCP8.5 NH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CESM-CAM</td>
<td>-96.9</td>
<td>-99.9</td>
<td>-96.8</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>-118.3</td>
<td>+150.0</td>
<td>+134.9</td>
</tr>
<tr>
<td>GFDL-AM3</td>
<td>-75.2</td>
<td>-25.5</td>
<td>-78.9</td>
<td>-53.2</td>
<td>-36.2</td>
<td>-54.5</td>
<td>+96.3</td>
<td>+232.5</td>
<td>+83.1</td>
</tr>
<tr>
<td>GISS-E2-R</td>
<td>-78.1</td>
<td>-13.9</td>
<td>-81.2</td>
<td>-75.0</td>
<td>-27.8</td>
<td>-77.2</td>
<td>+22.3</td>
<td>+83.3</td>
<td>+19.5</td>
</tr>
<tr>
<td>MIROC-CHEM</td>
<td>-74.0</td>
<td>10.5</td>
<td>-80.6</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>+20.5</td>
<td>+78.9</td>
<td>+18.3</td>
</tr>
<tr>
<td>MOCAGE</td>
<td>-53.7</td>
<td>+68.6</td>
<td>-59.7</td>
<td>-17.5</td>
<td>+202.9</td>
<td>+28.3</td>
<td>+85.1</td>
<td>+448.6</td>
<td>+67.0</td>
</tr>
<tr>
<td>UM-CAM</td>
<td>-73.6</td>
<td>+92.3</td>
<td>-76.7</td>
<td>-52.8</td>
<td>+7.7</td>
<td>-54.8</td>
<td>+49.3</td>
<td>+176.9</td>
<td>+45.1</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>-75.2 ± 13.7</td>
<td>+1.9 ± 69.5</td>
<td>-79.0 ± 11.8</td>
<td>-49.6 ± 23.8</td>
<td>+36.6 ± 112.4</td>
<td>-53.7 ± 20.0</td>
<td>+68.6 ± 46.3</td>
<td>+196.7 ± 137.7</td>
<td>+61.3 ± 44.8</td>
</tr>
</tbody>
</table>

Table 3d: Simulated percentage (%) changes in potential O₃ impact on vegetation (IO3) for each model between 2100 and historical simulation for RCPs (North and South Hemisphere, i.e NH and SH). Missing or not available data are identified (n.a).

<table>
<thead>
<tr>
<th>Models</th>
<th>RCP2.6 global</th>
<th>RCP2.6 SH</th>
<th>RCP2.6 NH</th>
<th>RCP4.5 global</th>
<th>RCP4.5 SH</th>
<th>RCP4.5 NH</th>
<th>RCP8.5 global</th>
<th>RCP8.5 SH</th>
<th>RCP8.5 NH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CESM-CAM</td>
<td>-97.2</td>
<td>-91.8</td>
<td>-97.5</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>+129.6</td>
<td>+146.8</td>
<td>+123.5</td>
</tr>
<tr>
<td>GFDL-AM3</td>
<td>-69.4</td>
<td>-49.1</td>
<td>-74.8</td>
<td>-50.1</td>
<td>-61.1</td>
<td>-47.2</td>
<td>+91.9</td>
<td>+95.5</td>
<td>+90.4</td>
</tr>
<tr>
<td>GISS-E2-R</td>
<td>-66.1</td>
<td>20.7</td>
<td>-74.3</td>
<td>-71.7</td>
<td>-53.1</td>
<td>-74.6</td>
<td>+21.5</td>
<td>+56.6</td>
<td>+14.2</td>
</tr>
<tr>
<td>MIROC-CHEM</td>
<td>-41.4</td>
<td>-18.9</td>
<td>-51.9</td>
<td>n.a</td>
<td>n.a</td>
<td>n.a</td>
<td>+41.0</td>
<td>+103.8</td>
<td>+25.5</td>
</tr>
<tr>
<td>MOCAGE</td>
<td>-46.6</td>
<td>22.8</td>
<td>-51.4</td>
<td>-7.0</td>
<td>-38.0</td>
<td>-1.0</td>
<td>+77.7</td>
<td>+68.2</td>
<td>+80.0</td>
</tr>
<tr>
<td>UM-CAM</td>
<td>-45.8</td>
<td>-9.2</td>
<td>-71.3</td>
<td>-59.5</td>
<td>+2.0</td>
<td>-69.0</td>
<td>+61.3</td>
<td>+84.2</td>
<td>+56.0</td>
</tr>
<tr>
<td>Mean ± SD</td>
<td>-61.1 ± 21.1</td>
<td>-35.5 ± 30.7</td>
<td>-70.2 ± 17.2</td>
<td>-47.1 ± 28.1</td>
<td>-37.6 ± 28.1</td>
<td>-47.9 ± 33.4</td>
<td>-70.5 ± 38.4</td>
<td>+92.5 ± 31.7</td>
<td>+65.6 ± 42.4</td>
</tr>
</tbody>
</table>